Description
Pine Research currently offers working driven headstage amplifiers. In a working driven system, the reference electrode is grounded. The FSCV potential waveform (ramp) is connected to the non-inverting input of the operational amplifier, while the working electrode is connected to the inverting input. In this arrangement, the voltage at the microelectrode will follow the ramp applied to the inverting input.1
In this two-electrode configuration, current arising from electron-transfer reactions, such as the oxidation of dopamine, passes between reference and working electrodes. The measured current passes through the headstage amplifer, where it is converted to voltage, and sums with the the ramp voltage at the inverting input. Mathematically,
where is the output voltage, is input current, is feedback resistor (gain), and is the CV ramp voltage. By rearrangement, the signal voltage (proportional to the current across the feedback resistor in the headstage) is then
HDCV software, which supports the WaveNeuro FSCV Potentiostat system, performs software subtraction of the ramp according to this relationship, resulting in only the true differential current measurement.1
(1) Takmakov, P.; McKinney, C. J.; Carelli, R. M.; Wightman, R. M. Instrumentation for Fast-Scan Cyclic Voltammetry Combined with Electrophysiology for Behavioral Experiments in Freely Moving Animals. Rev. Sci. Instrum. 2011, 82, 74302.
R.M. Wightman et. al. have reported on this topic in depth If, after reviewing this document, you have any questions about our neuroelectrochemical research products, please do not hesitate to contact us.